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Description:

(this talk is part of the XP2023 conference workshop sessions)

The actual industry adoption of the XP "technical practices" such as test-driven development, simple
design, merciless refactoring, or actual continuous integration is unfortunately fairly limited. Perhaps one
reason for this is that these practices are grouped as "technical practices" which then misses the social-
team impact of these practices. This talk explores the non-technical aspect of the XP technical practices
by using Systems Thinking and suggests we might need to call them "social team practices that require
technical skills"
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Social Team Practices
that require
Technical Skills



What we call
technical practices
are mostly
social team practices
that
require technical sKkills



Calling them
technical practices
has prevented adoption



They seem
optional, additional
rather than

essential, foundational
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Incremental Design

growing building

This seems trivial but dramatically impacts
how developers do their work.




Limbo: Scaling Software
Collaboration

@
\./

0000

CHUBBY CHECKER

IMBo =
MRY \T




“real team” WIP Learning Cost of change

A

o
T 6 Amount ofitems  ©  Amount of
shared <= ateam works on = time working Ease of change
responsibility at the same time together
o}
Amount of
Ability to work on people
a few items at the <@ behind one
same time computer
(pair/mob)
Intearation Ability to Shared Confidence in
fre guenc <= split items in code <=  making
9 y small tasks ownership changes
Ability to :
Test-driven Automated
el B Development - tests

incrementally

Refactoring



Team Amount of items  © Amount of
shared 4—— a team works on ==» time working

Ease of change

responsibility at the same time together
o
Amount of
Ability to work on people
a few items at the <= behind one
same time computer
(pair/mob)
Intearation Ability to Shared Confidence in
f 9 split items in code <@  making
requency .
small tasks ownership changes
Ability to ,
. Test-driven - Automated
Ul Development tests

incrementally

Refactoring

Clean code

%

Quick feedback
that it works

A




Technical agile? R

, Confidence in
Integration

fr n making Clean code Quick feedback
R changes * that it works

Test-driven . Automated
Development tests

Refactoring




“real team” WIP Learning Cost of change

A

o}
Team o Amount of items  © Amount of
shared — < 3 team works on ==§» time working Ease of change
responsibility at the same time together
o}
Amount of
Ability to work on people
a few items at the <= behind one
same time computer
(pair/mob)
|7 e e Ability to Shared Confidence in
fre guenc = split items in code <=  making
9 y small tasks ownership changes
g ’ Ability to .
< Test-driven > Automated
work Development tests

incrementally

(no new elements,
just a copy of earlier slide) Refactoring



PFMR PROG RHMMlNG MONKESUSER.COM

COPY_SINGLETON (3).JAVA
WiLL DO!

Q WANT TO
ANOTHER o PAIR PROGRAM?
TEMPORARY

WE SHOULD
START WITH A
UNIT TEST




Amount of items  © Amount of
= Learning <=

Team
shared 4— a team works on == time working
responsibility at the same time together
Ease of change
o]
Amount of
Ability to work on people
a few items at the <= behind one

same time computer

(pair/mob)

Intearation Ability to Shared Confidence in
f 9 split items in code <=  making Clean code Quick feedback
requency . :
small tasks ownership changes that it works
A < Test-driven > Automated /
. BTt Development tests
incrementally
Refactoring
Holding each *//
; accountable for D|SC|pI|ned
the quality of Practice

what we produce



Team 0 Amount of items ~ © Amount of .
shareq < 2 team works on ==§» time working P> Learning <=
responsibility at the same time together
. Ease of change
Amount of
Ability to work on people
a few items at the <@== behind one
same time computer
(pair/mob)
Integration Aol e
¢ =P split items in Fluency of Clean code Quick feedback
requency Jo :
small tasks communication that it works
Ability to
work Co-location

incrementally

o]
Jira Remote work
Holding each %
accountable for Disciplined
> the quality of > Practice

what we produce



|s there an inverse relation
between
the amount of involvement
In ‘technical practices’
of a coach and the
believe that remote work is
working?



IS It possible to
avoid remote working
to become more
individualistic

systematically?
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How can we help companies
to see the true state
of their
‘technical practices’?



Why the ‘need’ to separate

technical practices
from

team practices
?






