
Valtech. All Right Reserved.

Refactoring Space

Energy Drink for Your 

Codebase

m i c h a e l . m a i @ v a l t e c h . c o m







s
e
c
ti
o

n

Why?00



◼Why?

◼ How does it feel?

◼ How to stay yourself?

◼What happens to our 

company culture?

Flexibility
and
Adaptability





◼ Existence!

◻ … in the face of competition

Survival



Refactoring business model

◼ Nokia

◼ Yamaha

Disruptive brands

◼ Ford Motors

◼ Tesla

◼ IBM

◼ General Electric

◼ Patagonia

◼ Gap

◼ FedEx

◼McDonalds

Changes in the market are the norm
Holding course is granting your COMPETITION the WIN

Selection from https://fabrikbrands.com/25-disruptive-brands/



s
e
c
ti
o

n

How?01



Stable and fast build system
Technical foundation



◼ As your teams are IN …

◻ The Build fits the needs

◻ Include additional experts during 

refinement and eventually SP2

◻ Necessary modifications can be 

executed directly

◻ Potentials are faster identified

◼… but …

◻ Maybe you need to change your org-

structure

◼ Don’t have this?

◻ Great → Gather volunteers and 

enthusiast and start building your Build

◼ Consider

◻ CI is a development practice

◻ Tools and process should be “helping 

hands” neither masters nor tyrants

Stable and fast build system
Technical foundation

LeSS

• “More with less” – Teams own 

their processes



Stable and fast verification
Business reliability



◼ Reliability … 

◻ Precise and fast

◻ Complete (may not be fast)

◻ Exhaustive (definitely not fast)

◻ Complaint

◻ Acceptable

◻ Desirable (by customer & target group!)

◻ Ecosystem (also foreign ecosystems)

◼ Don’t have this?

◻ Great → Gather volunteers and 

enthusiast and start building automated 

business verification and validation tool 

chain

◼ Consider

◻ Proving your business case

◻ Providing fast and valuable feedback to 

developers

Stable and fast verification
Business reliability

Agile Manifesto

• “Working Software”



Support by teams
Bottom-up



◼ Understanding …

◻ Technology

◻ Business

◻ Competition

◻ Operation and service cases

◻ Shifts and disruptions

◼ Don’t have this?

◻ Great → Gather teams and coach on 

business case, life-cycle, technological-

life-cycle, …

◼ Consider

◻ A profitable business case runs the 

company

◻ Profitable should not be limited to 

short-term view

Support by teams
Bottom-up



Support by (middle-) management
Top-down / Middle-down + Middle-Up



◼ Don’t have this?

◻ Great → Collaborate with sponsor and 

coach on business cases and product 

vision

◼ Consider

◻ Product Vision need to inspire your 

employee first

Support by (middle-) management
Top-down / Middle-down + Middle-Up



Support by mind
… now this is difficult …



◼ Don’t have this?

◻ Ooch

◼ You may have seen …

◻ Lack of volunteers

◻ No team is raising for refactorings

◻ No consideration of refactorings during 

SP1 and SP2

◻ APO neglect technical improvements

Support by mind
… now this is difficult …

“It is difficult to get a man to 

understand something when his 

job depends on not 

understanding it”

Upton Sinclair

But maybe this is

“Means and ends”

confused



◼ Don’t have this?

◻ Ooch

◼ You may have seen …

◻ Lack of volunteers

◻ No team is raising for refactorings

◻ No consideration of refactorings during 

SP1 and SP2

◻ APO neglect technical improvements

Support by mind
… now this is difficult …

“It is difficult to get a man to 

understand something when his 

job depends on not 

understanding it”

Upton Sinclair

But maybe this is

“Means and ends”

confused



Dynamics!

02



◼What do you really need?

◻ Why are you in business?

◻ For how long do you want to stay in 

business?

◻ Why are your customer with you?

“We don’t want to refactor”
What to we really need?

We want to be business flexible

• So we stay alive as a company

We want to have releasable builds, even 

during a sprint

• Release as the business sees fit

• No tyranny of (major) releases

We want to attract more developers

• So we can increase our capacity 

to outrun our competition

We want to develop junior developers 

fast to experienced/senior developers

• We want to hire cheap “juniors”, 

get them fast to cheap “senior” 

developers



Exploring a proxy



Exploring a proxy



◻ Providing a “safe” place to learn

◻ Providing a helpful space to fail and get direct coaching without hassle

◻ Space on high-level so failing is okay – What happens in Vegas stays in Vegas

Breaking the gordian knot

Entering …

Refactoring Space



Coaching
Staying in the fire with your mates



s
e
c
ti
o

n

What?03





Discussion with 

coach

Plenty of space of 

visual thinking and 

explaining

Contemplating

One shared 

screen

One shared 

workstation

Back-teaching

Notes,

cheat-sheet

Active listening



From the trenches

04



◼ Implementation and design quality is a responsibility of the teams

◻ Not related to any product backlog item required, but all

◼ Individual team members are welcome

◻ Lower the entering barrier

◼ Vegas rule apply

◻ Watch your company culture

Important outlines



◼ No preparation needed by joiners

◻ Learning mind required, thou

◼ Developer machine (e.g. laptop) required

◻ Easy application of learned practices in day-to-day work

◼ Dedicated room with whiteboards

◻ Reduce complexity

Important outlines



◼ Ensure lateral support from disciplinary managers

◻ Why lateral?

◼ Advertise to APOs

◻ So they don’t block teams who wish to join a refactoring space

◻ Most of the time PO does not interfere

◼ Promote through Scrum Masters

◻ Connection makers

Steps



◼ Advertise in Communities

◻ So they may spread the word within their enthusiastic members

◼ Hinting “prime” subjects teams

◻ Offer additional support

◼ Visual

◼ No jingle ;) 

Steps



How to get it fly?
Many small refactorings keep you nimble, big ones adjust you to the market



◼ Enthusiastic developers

◼ Spreading the word

◻ Building success stories

◻ Starting a movement

◻ Conquering the code

◼ Let the results speak for themselves

How to get it fly?
Many small refactorings keep you nimble, big ones adjust you to the market



s
e
c
ti
o

n

Retrospect05



◼ Improve / Change / Experiment

◻ Traction

◻ “Doing good things and talk about this”

◻ Getting clear of (contract) limitation 

whom to include in the session

◻ Become first class in work schedule

◼No, its not slack

◼No, its not a separate item

◼ Keep

◻ Small groups

◻ Good ratio Coach / Developer

◻ Open to current needs of joining 

induviduals

Keep – Improve 



s
e
c
ti
o

n

Addendum

Q&A during session

06



◼ Beside the foundation (build system, business reliability, …) there is no 

preferred sequence

◼ Avoid management-like direction

◼ Ask the question behind the call

◻ E.g. Call: “We need better documentation”

◼Question behind: “Is the code to complicated to understand“ → consider: investing in Clean Code 

rather on documentation

◼Question behind: “Is the interaction between objects complex to understand” → consider: investing in 

Test Driven Development, Clean Architecture and/or Hexagonal Architecture, explanatory tests that suit 

as documentation and auto-generation of documentation from these tests and public API

Addendum
What to refactor first? Focus for refactoring space?



◼ The concept of Refactoring Space is that of super charger for learning

◻ First, establish learning

◼Once a week / twice a Sprint

◼half-day to full-day

◼Volunteers 

◻ Second, scale it

◼Everyday

◼half-day to full-day

◼Volunteers

◻ Third, emerge into normal mode

◼No dedicated Refactoring Space needed any more

◼Expect spontaneous mob programming session between arbitrary teams and developers → support 

them

Addendum
Time schedule? Question of scaling



◼ Partial “Yes”

◻ Yes, technical coaches should be present in the beginning to smoothen the kick-start of 

learning

◻ Yes, technical coaches should be present for complex refactorings and restructurings in 

the first place. Students can learn to avoid pitfalls and dead-ends early on. So they are 

able to teach their colleagues tips, tricks and practices.

◼ Partial “No”

◻ No, over time there is no need for technical coaches as the skills of the developers 

increase and are able to teach each other directly

◻ No, over time a non-technical facilitator is able ask the “right questions” and therefore 

support students and developers in learning, refactoring and restructuring

Addendum
Always with technical excellence coaches?



◼ No, you shouldn’t wait for the next Refactor Space to refactor

◻ The Refactoring Space is intended to kick-start the learn of “how to” refactor and 

restructure code

◻ As soon as you see an opportunity, please do refactor and restructure

◻ If you feel unsecure → pair or mob

◻ If you feel unsecure → first improve test coverage (code and function/business case 

coverage)

◻ If you feel unsecure → commit your change to a pull request for feedback before merge

◻ If you like to socialize → pair or mob

Addendum
Should I wait for the next refactoring space to do refactoring?



Thank you


