
DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Exploratory Testing in an
Agile Context
A guide to using Exploratory Testing on Agile software
development teams.

Elisabeth Hendrickson

2

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Exploratory Testing.
So you bang on the
keyboard randomly,

right? Um no,
not really.

3

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Exploratory Testing.
So you bang on the
keyboard randomly,

right? Um no,
not really.

What is Exploratory Testing Anyway?
Exploratory Testing involves simultaneously learning about the

software under test while designing and executing tests, using

feedback from the last test to inform the next.

Cem Kaner coined the term in the 1980’s, though the practice

undoubtedly started much earlier.

Because there is a common misunderstanding that Exploratory

Testing means simply “do random stuff and see what happens,” it’s

important to emphasize that this is a rigorous investigative practice.

We use the same kinds of test design analysis techniques and

heuristics in Exploratory Testing that we do in traditional test

design, but we execute the tests immediately. The test design and

execution becomes inseparable, a single activity.

2

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

3

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

4

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Tests as Experiments
When we design tests while exploring, we have a hypothesis about

how the software will behave: perhaps we suspect the software will

exhibit a particular type of error, or perhaps we are seeking to

confirm how the software works.

Either way, we think of a little experiment, and then perform it

immediately. Our experiments teach us about the system. We learn

how it works, what makes it tick, how it’s organized. We discover

not just what works and what doesn’t, but also general patterns of

vulnerabilities.

The more we learn about how the system works, and the

circumstances under which it misbehaves, the better we are at

designing good experiments that yield useful information.

3

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

4

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Testing
Tool?

5

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Testing
Tool?

Really? No Keyboard Banging?
Sometimes we do things when exploring that seem odd to an

outside observer.

James Bach talks about his “Shoe Test” in which he places a shoe on

the keyboard.

But James doesn’t put a shoe on the keyboard because he’s trying to

come up with wacky random stuff. He does it because he has

noticed that some software exhibits bad behavior when it receives

too many key inputs at one time. Placing a cat on the keyboard, or

handing the keyboard to a 2-year-old, might result in similar

behavior. But a shoe or a book is usually more handy.

So yes, there might be keyboard banging involved in Exploratory

Testing. But it’s keyboard banging with a theory of potential error,

4

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

5

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

6

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

not just random wacky stuff because we can’t think of anything

better to do.

Exploratory Testing and Agile
Exploratory Testing is a core testing practice for Agile teams.

In an Agile context, scripted regression tests are typically

automated. The Continuous Integration (CI) system executes these

tests with every build. Such automation is essential to obtaining the

fast feedback that Agile teams need to deliver frequently at a

sustainable pace.

However, all that automation is not sufficient to ensure that the

system does everything we expect and nothing we don’t. Someone,

somewhere, has to actually use the system.

And yet writing detailed test scripts for a manual test effort doesn’t

make sense in an Agile context. If it’s a test that’s important enough

5

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

6

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

7

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

to script, and execute repeatably, it’s important enough to

automate. 1

So Agile teams still need manual testing, but don’t need repeatable-

follow-a-script testing. Instead, Agile teams need a manual testing

approach that’s adaptable (because the software under test changes

1 Discussing automation strategies is outside the scope of this book. But yes, I do think

that if you can write a manual script for a test, you can automate it. If you can give a

human repeatable step-by-step instructions for executing a test, you can write an

automated test to do the same thing. And if you’re going to argue “but you can’t write

software to unplug a network cable” then I’m going to tell you that you can. Or more

specifically, the programmers who write the network error handling logic can make it

possible by writing the code such that a simulator can fake pulling the network cable.

You’ll still need to do manual exploration, of course, but having a small number of

repeatable automated regression tests around network cable unplugging will save the

team a world of grief on the day that someone accidentally checks in code that breaks

that error handling.

6

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

7

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

8

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

very quickly on Agile projects) and that produces large amounts of

information quickly (because Agile teams thrive on fast feedback).

Exploratory Testing is a perfect fit.

Instead of documenting step-by-step instructions, we capture just

simple charter statements that represent questions we want testing

to be able to answer.

Then using charters to focus our explorations and heuristics to

guide us, we move through the software rapidly, poking and

prodding to reveal unintended consequences of design decisions

and risks we didn’t consider in advance. In doing so, we gather large

amounts of information very quickly.

Further, because Exploratory Testing involves using the results from

the last test to inform the next, we can adapt our testing approach

quickly if we notice something that might indicate a vulnerability or

7

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

8

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

9

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

risk. We can tailor our investigations to what’s important right now,

without being constrained to follow a test script that we thought

was important some number of months ago.

This book covers the essential elements of Exploratory Testing:

learning the system from the outside in; designing tests using

heuristics; executing tests and observing results closely; and

integrating Exploratory Testing into story development within a

Sprint or Iteration.

8

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

9

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

10

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Learning.
In which we discuss learning about the
system and capturing our understanding for
later use in designing tests.

9

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

10

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

11

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Simple Scenarios
What is the software intended to do?

This is where you start learning the system: with the simplest case

that should work. You’re not testing the software yet, but you are

testing your understanding.

Are you exploring a shopping cart? Add an item. Check out. Testing

a word processor? Write some text. Add an image. Save it. Testing a

DNS server? Query it to get an IP address for a domain. Whatever it

is that you’re testing, start by doing basic user actions to see what

the system does.

As you go, start taking notes about...

10

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

11

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

12

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Nouns and Verbs
The nouns of the system are the things that it manipulates,

manages, and interacts with. Typical nouns for a shopping cart

would include things like: carts, registered users, items, quantities,

prices, discounts, coupons, payment methods, and addresses.

The verbs of the system are the actions you can take using the

system, or that the system can take. In the shopping cart example

verbs could include: checkout, update, remove, abandon, save,

login, logout.

As you collect a list of nouns and verbs for the system, you’re

capturing a language that describes the system. This will come in

handy for designing tests, as well as for further explorations to

learn more about the shape of the system.

11

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

12

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

13

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Alternate Paths
As you explore the system noting nouns and verbs, you’re likely to

notice that there is more than one way to do things.

Perhaps you can login by bringing up a Login page, and also by

filling in your login information into username/password fields that

appear at the top of each page. Perhaps there’s a “remember me”

option that allows the system to keep you logged in for days or

weeks.

Perhaps you can delete an item from the shopping cart by changing

the quantity to 0, or by clicking a Delete button, or by emptying

your shopping cart.

Whenever you notice that there are multiple ways to get to the same

result, make a note. You’ll want to vary these paths as you explore.

12

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

13

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Catalog

Shopping
Cart

SMTP
Server
(Email)

Ware
house

Payment
Gateway

14

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Catalog

Shopping
Cart

SMTP
Server
(Email)

Ware
house

Payment
Gateway

Context Diagrams
Software lives within an entire ecosystem. It runs on an operating

system, stores data on the file system or in a database, and

integrates with other software, like payment gateways for credit

card processing, SMTP servers for email, and internal systems like

sales reporting, inventory control, and warehouse/shipping

applications.

As you begin exploring, create a simple context diagram that shows

external resources or dependencies, like the one to the left. Over

time, when you learn more about the system and the context within

which it lives, add more details.

Every dependent system provides additional opportunities for

exploration.

13

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

14

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

15

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Variables
If you’re a programmer, a variable is a named location in memory.

You declare variables with statements like “int foo;”

That’s not the kind of variable we’re talking about here.

Rather, we’re talking about “variable” in the sense of “things you can

vary.” More specifically, a variable in testing is anything that you can

change, or cause to be changed, via external interfaces (like the UI

or the file system), that might affect the behavior of the system.

Sometimes variables are obviously changeable things like the value

in a field on a form. Sometimes they’re obvious, but not intended to

be changed directly, like the key/value pairs in a URL string for a

web-based application. Sometimes they’re subtle things that can

only be controlled indirectly, like the number of users logged in at

any given time or the number of results returned by a search.

14

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

15

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

16

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Subtle variables are the ones we often miss when analyzing the

software to design tests. Consider for example the Therac-25 case

that Nancy Leveson describes in her book Safeware.

The Therac-25 was a radiation therapy machine that overdosed

patients with radiation, killing them. The story dates back to the

1980’s, but it’s still relevant today.

According to Nancy Leveson, in at least one case, the malfunction

that caused a death could be traced back to the medical technician’s

entering and then editing the treatment data in under 8 seconds.

That’s the time it took the magnetic locks to engage. Notice two key

subtle variables, or things that a user could change: the speed of

input and the sequence of actions.

15

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

16

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

17

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Further, Leveson found that every 256th time the setup routine ran,

it bypassed an important safety check. That’s yet another subtle

variable: the number of times the setup routine ran.

As you begin to learn the system, make note of things you notice

that you can change, or cause to be changed, that are subtle or

otherwise interesting.

The more you look for variables, the more you’ll find. They’re

everywhere.

Then, as you explore, use the Heuristics described in the Test

Design section to suggest interesting variations.

16

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

17

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

18

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Designing.
In which we discuss using heuristics to
design tests on the fly.

17

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

18

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

19

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Using Heuristics
You’ve started exploring the system. You have the general shape of

it. You understand the context in which it lives, the kind of data it

manipulates, the actions you can take. You may have some ideas

about sequences and configurations that might be interesting.

This section lays out a selection of heuristics: test ideas that are

general enough to be applicable across a wide range of domains

and technologies.

Use this section as a reference when you run out of new ideas for

things to try.

[note: each heuristic will get about a page worth of explanation/

examples.]

18

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

19

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

20

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

File System Interactions
Network Variations
CRUD: Create, Read, Update, Delete
Position: Beginning, Middle, End
Count: 0, 1, Many
Interruptions
States and Transitions
Time: Before, During, After
Combining Heuristics
Randomizing Noun and Verb Combinations
Following the Data
Personas

19

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

20

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

21

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Executing.
In which we discuss observing, note-taking,
and defect isolation.

20

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

21

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

22

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Mechanics.
In which we discuss how to structure your
explorations within a Sprint or Iteration in
an Agile process.

21

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

22

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

23

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Charters
Traditional scripted testing is documentation-centric with written

Test Plans, Test Strategies, Test Cases, and Test Procedures.

Exploratory Testing involves far less documentation. We don’t

document each and every test case. Instead, we write charters:

simple statements of the information that we hope to discover

through exploration.

One way of expressing charters is with the simple template:

Explore area

With resources, constraints, tools, etc.

To discover information

Some charters are broad: “Explore the system with typical usage

scenarios to discover how it works.”

22

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

23

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

24

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Some are narrow: “Explore the File Import feature with various

invalid file formats to discover if there are any circumstances under

which the error handling does not give a reasonable response to an

invalid file.”

Some are about valid usage scenarios with representative user

personas: “Explore browsing and shopping with a non-technical user

perspective to discover how easy or hard it is to buy items.”

Others are about misusage scenarios: “Explore the shopping cart

feature with a tool to perform http POST requests to discover if

there’s any way to get stuff for free.”

We might express charters a little differently, and that’s fine. The

purpose of the charter is to provide a focus to our explorations.

23

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

24

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

25

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Sessions
During a session, if we notice that we’re going off on a tangent, we

use the charter to remind us what we’re supposed to be

investigating. We might make a note of another charter to

investigate later, but we make a point of staying on charter for now.

24

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

25

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

26

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

Frequently Asked
Questions.
In which we tackle questions that seem to
come up over and over (and over) again.

25

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

26

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

27

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

References

 Bach, James. “What Is Exploratory Testing?”

 Bach, Jonathan. “Session-Based Test Management”

 Kohl, Jonathan. “Exploratory Testing on Agile Teams”

 Kohl, Jonathan, “User Profiles and Exploratory Testing”

 Marick, Brian. “A Survey of Exploratory Testing”

 Tinkham, Andy and Kaner, Cem. “Exploring Exploratory Testing”

26

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

27

DRAFT. Do not distribute. v 060509
Copyright © 2009 Quality Tree Software, Inc.

If you liked this book...
You’ll love our classes...

[blatant promotional text goes here.]

